Ozone Depletion Potentials of HCFC-123 and HCFC-124
The Montreal Protocol has phased out most chlorinated and brominated compounds because of their great efficiency in depleting ozone in the stratosphere. Compounds such as CHCl2CF3 (HCFC-123) and CHClFCF3 (HCFC-124) are being used in commercial refrigeration units and have much shorter atmospheric lifetimes than the chlorofluorocarbons they replace. Despite their small resulting Ozone Depletion Potentials (ODPs), these compounds are still currently expected to be eliminated under the existing Protocol, but there remain questions about finding suitable replacements that would not have other environmental effects. The HCFC-123 and HCFC-124 model-calculated atmospheric lifetimes of 1.3 years and 5.8 years are much shorter compared to the 45 years of CCl3F (CFC-11). In this study, we have reevaluated these compounds with an updated version of the UIUC two-dimensional chemical transport model and with the MOZART (version 3) three-dimensional chemical-transport model. The new version of the two-dimensional model gives ODPs of 0.012 and 0.0125 for HCFC-123 and HCFC-124, respectively. The ODP for HCFC-123 agrees well with previously reported values while the ODP for HCFC-124 is much smaller than earlier estimates. These analyses along with those from the three-dimensional modeling studies will be discussed in the presentation.